default search action
Siddharth Garg
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j53]Atul Kumar, Siddharth Garg, Soumya Dutta:
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data. IEEE Trans. Vis. Comput. Graph. 31(1): 1343-1353 (2025) - 2024
- [j52]Kang Liu, Di Wu, Yangyu Wu, Yiru Wang, Dan Feng, Benjamin Tan, Siddharth Garg:
Manipulation Attacks on Learned Image Compression. IEEE Trans. Artif. Intell. 5(6): 3083-3097 (2024) - [j51]Alireza Sarmadi, Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Privacy-Preserving Collaborative Learning Through Feature Extraction. IEEE Trans. Dependable Secur. Comput. 21(1): 486-498 (2024) - [j50]Akshaj Kumar Veldanda, Ivan Brugere, Sanghamitra Dutta, Alan Mishler, Siddharth Garg:
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access. Trans. Mach. Learn. Res. 2024 (2024) - [j49]Zhongzheng Yuan, Samyak Rawlekar, Siddharth Garg, Elza Erkip, Yao Wang:
Split Computing With Scalable Feature Compression for Visual Analytics on the Edge. IEEE Trans. Multim. 26: 10121-10133 (2024) - [j48]Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, Siddharth Garg:
VeriGen: A Large Language Model for Verilog Code Generation. ACM Trans. Design Autom. Electr. Syst. 29(3): 46:1-46:31 (2024) - [c109]Alhad Daftardar, Brandon Reagen, Siddharth Garg:
SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs. PACT 2024: 271-283 - [c108]Georg Pichler, Marco Romanelli, Divya Prakash Manivannan, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg:
On the (In)feasibility of ML Backdoor Detection as an Hypothesis Testing Problem. AISTATS 2024: 4051-4059 - [c107]Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, Siddharth Garg:
Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization. ICLR 2024 - [c106]Sara Ghazanfari, Alexandre Araujo, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg:
LipSim: A Provably Robust Perceptual Similarity Metric. ICLR 2024 - [c105]Patricia Pauli, Aaron J. Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, Frank Allgöwer, Bin Hu:
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations. ICLR 2024 - [c104]Andre Nakkab, Sai Qian Zhang, Ramesh Karri, Siddharth Garg:
Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design. MLCAD 2024: 26:1-26:11 - [c103]Ezgi Özyilkan, Fabrizio Carpi, Siddharth Garg, Elza Erkip:
Neural Compress-and-Forward for the Relay Channel. SPAWC 2024: 366-370 - [c102]Fabrizio Carpi, Soheil Rostami, Joonyoung Cho, Siddharth Garg, Elza Erkip, Charlie Jianzhong Zhang:
Learned Pulse Shaping Design for PAPR Reduction in DFT-s-OFDM. SPAWC 2024: 406-410 - [e2]Hussam Amrouch, Jiang Hu, Siddharth Garg, Yibo Lin:
Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD, MLCAD 2024, Salt Lake City, UT, USA, September 9-11, 2024. ACM 2024, ISBN 979-8-4007-0699-8 [contents] - [i99]Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, Siddharth Garg:
Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization. CoRR abs/2401.12205 (2024) - [i98]Patricia Pauli, Aaron J. Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, Frank Allgöwer, Bin Hu:
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations. CoRR abs/2401.14033 (2024) - [i97]Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri, Siddharth Garg, Jeyavijayan Rajendran:
Make Every Move Count: LLM-based High-Quality RTL Code Generation Using MCTS. CoRR abs/2402.03289 (2024) - [i96]Minghao Shao, Boyuan Chen, Sofija Jancheska, Brendan Dolan-Gavitt, Siddharth Garg, Ramesh Karri, Muhammad Shafique:
An Empirical Evaluation of LLMs for Solving Offensive Security Challenges. CoRR abs/2402.11814 (2024) - [i95]Georg Pichler, Marco Romanelli, Divya Prakash Manivannan, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg:
On the (In)feasibility of ML Backdoor Detection as an Hypothesis Testing Problem. CoRR abs/2402.16926 (2024) - [i94]Ezgi Özyilkan, Fabrizio Carpi, Siddharth Garg, Elza Erkip:
Neural Compress-and-Forward for the Relay Channel. CoRR abs/2404.14594 (2024) - [i93]Fabrizio Carpi, Soheil Rostami, Joonyoung Cho, Siddharth Garg, Elza Erkip, Charlie Jianzhong Zhang:
Learned Pulse Shaping Design for PAPR Reduction in DFT-s-OFDM. CoRR abs/2404.16137 (2024) - [i92]Jason Blocklove, Siddharth Garg, Ramesh Karri, Hammond Pearce:
Evaluating LLMs for Hardware Design and Test. CoRR abs/2405.02326 (2024) - [i91]Ezgi Özyilkan, Fabrizio Carpi, Siddharth Garg, Elza Erkip:
Learning-Based Compress-and-Forward Schemes for the Relay Channel. CoRR abs/2405.09534 (2024) - [i90]Boyuan Chen, Mingzhi Zhu, Brendan Dolan-Gavitt, Muhammad Shafique, Siddharth Garg:
Model Cascading for Code: Reducing Inference Costs with Model Cascading for LLM Based Code Generation. CoRR abs/2405.15842 (2024) - [i89]Minghao Shao, Sofija Jancheska, Meet Udeshi, Brendan Dolan-Gavitt, Haoran Xi, Kimberly Milner, Boyuan Chen, Max Yin, Siddharth Garg, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique:
NYU CTF Dataset: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security. CoRR abs/2406.05590 (2024) - [i88]Luca Collini, Siddharth Garg, Ramesh Karri:
C2HLSC: Can LLMs Bridge the Software-to-Hardware Design Gap? CoRR abs/2406.09233 (2024) - [i87]Jitendra Bhandari, Johann Knechtel, Ramesh Narayanaswamy, Siddharth Garg, Ramesh Karri:
LLM-Aided Testbench Generation and Bug Detection for Finite-State Machines. CoRR abs/2406.17132 (2024) - [i86]Jitendra Bhandari, Animesh Basak Chowdhury, Mohammed Nabeel, Ozgur Sinanoglu, Siddharth Garg, Ramesh Karri, Johann Knechtel:
ASCENT: Amplifying Power Side-Channel Resilience via Learning & Monte-Carlo Tree Search. CoRR abs/2406.19549 (2024) - [i85]Atul Kumar, Siddharth Garg, Soumya Dutta:
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data. CoRR abs/2407.16119 (2024) - [i84]Andre Nakkab, Sai Qian Zhang, Ramesh Karri, Siddharth Garg:
Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design. CoRR abs/2407.18276 (2024) - [i83]Alhad Daftardar, Brandon Reagen, Siddharth Garg:
SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs. CoRR abs/2408.05890 (2024) - [i82]Sara Ghazanfari, Alexandre Araujo, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
EMMA: Efficient Visual Alignment in Multi-Modal LLMs. CoRR abs/2410.02080 (2024) - [i81]Jason Blocklove, Shailja Thakur, Benjamin Tan, Hammond Pearce, Siddharth Garg, Ramesh Karri:
Can EDA Tool Feedback Improve Verilog Generation by LLMs? CoRR abs/2411.11856 (2024) - [i80]Jitendra Bhandari, Vineet Bhat, Yuheng He, Siddharth Garg, Hamed Rahmani, Ramesh Karri:
Masala-CHAI: A Large-Scale SPICE Netlist Dataset for Analog Circuits by Harnessing AI. CoRR abs/2411.14299 (2024) - [i79]Luca Collini, Siddharth Garg, Ramesh Karri:
C2HLSC: Leveraging Large Language Models to Bridge the Software-to-Hardware Design Gap. CoRR abs/2412.00214 (2024) - [i78]Patrick Yubeaton, Jianqiao Mo, Karthik Garimella, Nandan Kumar Jha, Brandon Reagen, Chinmay Hegde, Siddharth Garg:
TruncFormer: Private LLM Inference Using Only Truncations. CoRR abs/2412.01042 (2024) - [i77]Weihua Xiao, Venkata Sai Charan Putrevu, Raghu Vamshi Hemadri, Siddharth Garg, Ramesh Karri:
PrefixLLM: LLM-aided Prefix Circuit Design. CoRR abs/2412.02594 (2024) - [i76]Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Out-of-Distribution Detection with Overlap Index. CoRR abs/2412.06168 (2024) - [i75]Sara Ghazanfari, Siddharth Garg, Nicolas Flammarion, Prashanth Krishnamurthy, Farshad Khorrami, Francesco Croce:
Towards Unified Benchmark and Models for Multi-Modal Perceptual Metrics. CoRR abs/2412.10594 (2024) - 2023
- [j47]Christian Pilato, Luca Collini, Luca Cassano, Donatella Sciuto, Siddharth Garg, Ramesh Karri:
Optimizing the Use of Behavioral Locking for High-Level Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(2): 462-472 (2023) - [j46]Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, Siddharth Garg:
Bulls-Eye: Active Few-Shot Learning Guided Logic Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(8): 2580-2590 (2023) - [j45]Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Differential Analysis of Triggers and Benign Features for Black-Box DNN Backdoor Detection. IEEE Trans. Inf. Forensics Secur. 18: 4668-4680 (2023) - [j44]Akshaj Kumar Veldanda, Ivan Brugere, Jiahao Chen, Sanghamitra Dutta, Alan Mishler, Siddharth Garg:
Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale with MinDiff Loss. Trans. Mach. Learn. Res. 2023 (2023) - [c101]Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, Brandon Reagen:
Characterizing and Optimizing End-to-End Systems for Private Inference. ASPLOS (3) 2023: 89-104 - [c100]Erika S. Alcorta, Andreas Gerstlauer, Chenhui Deng, Qi Sun, Zhiru Zhang, Ceyu Xu, Lisa Wu Wills, Daniela Sanchez Lopera, Wolfgang Ecker, Siddharth Garg, Jiang Hu:
Special Session: Machine Learning for Embedded System Design. CODES+ISSS 2023: 28-37 - [c99]Animesh Basak Chowdhury, Lilas Alrahis, Luca Collini, Johann Knechtel, Ramesh Karri, Siddharth Garg, Ozgur Sinanoglu, Benjamin Tan:
ALMOST: Adversarial Learning to Mitigate Oracle-less ML Attacks via Synthesis Tuning. DAC 2023: 1-6 - [c98]Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri, Brendan Dolan-Gavitt, Siddharth Garg:
Benchmarking Large Language Models for Automated Verilog RTL Code Generation. DATE 2023: 1-6 - [c97]Fabrizio Carpi, Sivarama Venkatesan, Jinfeng Du, Harish Viswanathan, Siddharth Garg, Elza Erkip:
Precoding-oriented Massive MIMO CSI Feedback Design. ICC 2023: 4973-4978 - [c96]Animesh Basak Chowdhury, Shailja Thakur, Hammond Pearce, Ramesh Karri, Siddharth Garg:
Invited Paper: Towards the Imagenets of ML4EDA. ICCAD 2023: 1-7 - [c95]Kai Pfeiffer, Yuze Jia, Mingsheng Yin, Akshaj Kumar Veldanda, Yaqi Hu, Amee Trivedi, Jeff Zhang, Siddharth Garg, Elza Erkip, Sundeep Rangan, Ludovic Righetti:
Path Planning Under Uncertainty to Localize mmWave Sources. ICRA 2023: 3461-3467 - [c94]Jason Blocklove, Siddharth Garg, Ramesh Karri, Hammond Pearce:
Chip-Chat: Challenges and Opportunities in Conversational Hardware Design. MLCAD 2023: 1-6 - [c93]Animesh Basak Chowdhury, Jitendra Bhandari, Luca Collini, Ramesh Karri, Benjamin Tan, Siddharth Garg:
ConVERTS: Contrastively Learning Structurally InVariant Netlist Representations. MLCAD 2023: 1-6 - [c92]Aaron J. Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, Bin Hu:
Exploiting Connections between Lipschitz Structures for Certifiably Robust Deep Equilibrium Models. NeurIPS 2023 - [c91]Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Marie-Pierre Revel, Siddharth Garg, Farshad Khorrami, Maria Vakalopoulou:
Towards better certified segmentation via diffusion models. UAI 2023: 1185-1195 - [c90]Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt:
Lost at C: A User Study on the Security Implications of Large Language Model Code Assistants. USENIX Security Symposium 2023: 2205-2222 - [c89]Pulak Mehta, Gauri Jagatap, Kevin Gallagher, Brian Timmerman, Progga Deb, Siddharth Garg, Rachel Greenstadt, Brendan Dolan-Gavitt:
Can Deepfakes be created on a whim? WWW (Companion Volume) 2023: 1324-1334 - [d2]Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt:
Lost at C: Data from the Security-focused User Study. Version 0.2. Zenodo, 2023 [all versions] - [i74]Akshaj Kumar Veldanda, Ivan Brugere, Sanghamitra Dutta, Alan Mishler, Siddharth Garg:
Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access. CoRR abs/2302.01385 (2023) - [i73]Federica Granese, Marco Romanelli, Siddharth Garg, Pablo Piantanida:
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection. CoRR abs/2302.02216 (2023) - [i72]Fabrizio Carpi, Sivarama Venkatesan, Jinfeng Du, Harish Viswanathan, Siddharth Garg, Elza Erkip:
Precoding-oriented Massive MIMO CSI Feedback Design. CoRR abs/2302.11526 (2023) - [i71]Animesh Basak Chowdhury, Lilas Alrahis, Luca Collini, Johann Knechtel, Ramesh Karri, Siddharth Garg, Ozgur Sinanoglu, Benjamin Tan:
ALMOST: Adversarial Learning to Mitigate Oracle-less ML Attacks via Synthesis Tuning. CoRR abs/2303.03372 (2023) - [i70]Kai Pfeiffer, Yuze Jia, Mingsheng Yin, Akshaj Kumar Veldanda, Yaqi Hu, Amee Trivedi, Jeff Zhang, Siddharth Garg, Elza Erkip, Sundeep Rangan, Ludovic Righetti:
Path Planning Under Uncertainty to Localize mmWave Sources. CoRR abs/2303.03739 (2023) - [i69]Pulak Mehta, Gauri Jagatap, Kevin Gallagher, Brian Timmerman, Progga Deb, Siddharth Garg, Rachel Greenstadt, Brendan Dolan-Gavitt:
Can deepfakes be created by novice users? CoRR abs/2304.14576 (2023) - [i68]Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, Siddharth Garg:
INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic Learning and Search. CoRR abs/2305.13164 (2023) - [i67]Jason Blocklove, Siddharth Garg, Ramesh Karri, Hammond Pearce:
Chip-Chat: Challenges and Opportunities in Conversational Hardware Design. CoRR abs/2305.13243 (2023) - [i66]Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Marie-Pierre Revel, Siddharth Garg, Farshad Khorrami, Maria Vakalopoulou:
Towards Better Certified Segmentation via Diffusion Models. CoRR abs/2306.09949 (2023) - [i65]Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Differential Analysis of Triggers and Benign Features for Black-Box DNN Backdoor Detection. CoRR abs/2307.05422 (2023) - [i64]Sara Ghazanfari, Siddharth Garg, Prashanth Krishnamurthy, Farshad Khorrami, Alexandre Araujo:
R-LPIPS: An Adversarially Robust Perceptual Similarity Metric. CoRR abs/2307.15157 (2023) - [i63]Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, Siddharth Garg:
VeriGen: A Large Language Model for Verilog Code Generation. CoRR abs/2308.00708 (2023) - [i62]Naren Dhyani, Jianqiao Mo, Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, Chinmay Hegde:
PriViT: Vision Transformers for Fast Private Inference. CoRR abs/2310.04604 (2023) - [i61]Akshaj Kumar Veldanda, Fabian Grob, Shailja Thakur, Hammond Pearce, Benjamin Tan, Ramesh Karri, Siddharth Garg:
Are Emily and Greg Still More Employable than Lakisha and Jamal? Investigating Algorithmic Hiring Bias in the Era of ChatGPT. CoRR abs/2310.05135 (2023) - [i60]Animesh Basak Chowdhury, Shailja Thakur, Hammond Pearce, Ramesh Karri, Siddharth Garg:
Towards the Imagenets of ML4EDA. CoRR abs/2310.10560 (2023) - [i59]Sara Ghazanfari, Alexandre Araujo, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg:
LipSim: A Provably Robust Perceptual Similarity Metric. CoRR abs/2310.18274 (2023) - [i58]Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, Ramesh Karri:
AutoChip: Automating HDL Generation Using LLM Feedback. CoRR abs/2311.04887 (2023) - 2022
- [j43]Hao Fu, Akshaj Kumar Veldanda, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation. IEEE Access 10: 5545-5558 (2022) - [j42]Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, Chinmay Hegde:
Sphynx: A Deep Neural Network Design for Private Inference. IEEE Secur. Priv. 20(5): 22-34 (2022) - [j41]Yier Jin, Tsung-Yi Ho, Stjepan Picek, Siddharth Garg:
Guest Editorial: Trustworthy AI. ACM J. Emerg. Technol. Comput. Syst. 18(3): 55:1-55:3 (2022) - [j40]Mingsheng Yin, Akshaj Kumar Veldanda, Amee Trivedi, Jeff Zhang, Kai Pfeiffer, Yaqi Hu, Siddharth Garg, Elza Erkip, Ludovic Righetti, Sundeep Rangan:
Millimeter Wave Wireless Assisted Robot Navigation With Link State Classification. IEEE Open J. Commun. Soc. 3: 493-507 (2022) - [j39]Animesh Basak Chowdhury, Benjamin Tan, Siddharth Garg, Ramesh Karri:
Robust Deep Learning for IC Test Problems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(1): 183-195 (2022) - [j38]Naman Patel, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Overriding Autonomous Driving Systems Using Adaptive Adversarial Billboards. IEEE Trans. Intell. Transp. Syst. 23(8): 11386-11396 (2022) - [c88]Mohamed El Massad, Nahid Juma, Jonathan Shahen, Mariana Raykova, Siddharth Garg, Mahesh Tripunitara:
Locked Circuit Indistinguishability: A Notion of Security for Logic Locking. CSF 2022: 455-470 - [c87]Christian Pilato, Donatella Sciuto, Benjamin Tan, Siddharth Garg, Ramesh Karri:
High-level design methods for hardware security: is it the right choice? invited. DAC 2022: 1375-1378 - [c86]Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, Chinmay Hegde:
Selective Network Linearization for Efficient Private Inference. ICML 2022: 3947-3961 - [c85]Zhongzheng Yuan, Samyak Rawlekar, Siddharth Garg, Elza Erkip, Yao Wang:
Feature Compression for Rate Constrained Object Detection on the Edge. MIPR 2022: 1-6 - [p1]Christian Pilato, Donatella Sciuto, Francesco Regazzoni, Siddharth Garg, Ramesh Karri:
Protecting Hardware IP Cores During High-Level Synthesis. Behavioral Synthesis for Hardware Security 2022: 95-115 - [d1]Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt:
Lost at C: Data from the Security-focused User Study. Version 0.1. Zenodo, 2022 [all versions] - [i57]Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, Chinmay Hegde:
Selective Network Linearization for Efficient Private Inference. CoRR abs/2202.02340 (2022) - [i56]Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, Siddharth Garg:
Too Big to Fail? Active Few-Shot Learning Guided Logic Synthesis. CoRR abs/2204.02368 (2022) - [i55]Zhongzheng Yuan, Samyak Rawlekar, Siddharth Garg, Elza Erkip, Yao Wang:
Feature Compression for Rate Constrained Object Detection on the Edge. CoRR abs/2204.07314 (2022) - [i54]Kang Liu, Di Wu, Yiru Wang, Dan Feng, Benjamin Tan, Siddharth Garg:
Denial-of-Service Attacks on Learned Image Compression. CoRR abs/2205.13253 (2022) - [i53]Akshaj Kumar Veldanda, Ivan Brugere, Jiahao Chen, Sanghamitra Dutta, Alan Mishler, Siddharth Garg:
Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale. CoRR abs/2206.14853 (2022) - [i52]Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, Brandon Reagen:
Characterizing and Optimizing End-to-End Systems for Private Inference. CoRR abs/2207.07177 (2022) - [i51]Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Brendan Dolan-Gavitt, Siddharth Garg:
Security Implications of Large Language Model Code Assistants: A User Study. CoRR abs/2208.09727 (2022) - [i50]Alireza Sarmadi, Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
Privacy-Preserving Collaborative Learning through Feature Extraction. CoRR abs/2212.06322 (2022) - [i49]Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami:
An Upper Bound for the Distribution Overlap Index and Its Applications. CoRR abs/2212.08701 (2022) - [i48]Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri, Brendan Dolan-Gavitt, Siddharth Garg:
Benchmarking Large Language Models for Automated Verilog RTL Code Generation. CoRR abs/2212.11140 (2022) - 2021
- [j37]Shivam Bhasin, Siddharth Garg, Francesco Regazzoni:
Special Section on Attacking and Protecting Artificial Intelligence. CAAI Trans. Intell. Technol. 6(1): 1-2 (2021) - [j36]Siddharth Garg, Daniel E. Holcomb, Jeyavijayan (JV) Rajendran, Ahmad-Reza Sadeghi:
Guest Editors' Introduction: Competing to Secure SoCs. IEEE Des. Test 38(1): 5-6 (2021) - [j35]Gauri Jagatap, Ameya Joshi, Animesh Basak Chowdhury, Siddharth Garg, Chinmay Hegde:
Adversarially Robust Learning via Entropic Regularization. Frontiers Artif. Intell. 4: 780843 (2021) - [j34]Farhad Shirani, Siddharth Garg, Elza Erkip:
A Concentration of Measure Approach to Correlated Graph Matching. IEEE J. Sel. Areas Inf. Theory 2(1): 338-351 (2021) - [j33]Kang Liu, Benjamin Tan, Ramesh Karri, Siddharth Garg:
Training Data Poisoning in ML-CAD: Backdooring DL-Based Lithographic Hotspot Detectors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(6): 1244-1257 (2021) - [j32]Kang Liu, Benjamin Tan, Gaurav Rajavendra Reddy, Siddharth Garg, Yiorgos Makris, Ramesh Karri:
Bias Busters: Robustifying DL-Based Lithographic Hotspot Detectors Against Backdooring Attacks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(10): 2077-2089 (2021) - [j31]Christian Pilato, Animesh Basak Chowdhury, Donatella Sciuto, Siddharth Garg, Ramesh Karri:
ASSURE: RTL Locking Against an Untrusted Foundry. IEEE Trans. Very Large Scale Integr. Syst. 29(7): 1306-1318 (2021) - [c84]Kang Liu, Benjamin Tan, Siddharth Garg:
Subverting Privacy-Preserving GANs: Hiding Secrets in Sanitized Images. AAAI 2021: 14849-14856 - [c83]Haoyu Yang, Shifan Zhang, Kang Liu, Siting Liu, Benjamin Tan, Ramesh Karri, Siddharth Garg, Bei Yu, Evangeline F. Y. Young:
Attacking a CNN-based Layout Hotspot Detector Using Group Gradient Method. ASP-DAC 2021: 885-891 - [c82]Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt, Siddharth Garg:
NNoculation: Catching BadNets in the Wild. AISec@CCS 2021: 49-60 - [c81]Nimisha Limaye, Animesh Basak Chowdhury, Christian Pilato, Mohammed Thari Nabeel, Ozgur Sinanoglu, Siddharth Garg, Ramesh Karri:
Fortifying RTL Locking Against Oracle-Less (Untrusted Foundry) and Oracle-Guided Attacks. DAC 2021: 91-96 - [c80]Benjamin Tan, Siddharth Garg, Ramesh Karri, Yuntao Liu, Michael Zuzak, Abhisek Chakraborty, Ankur Srivastava, Omid Aramoon, Qian Xu, Gang Qu, Adam A. Porter, Jeno Szep, Warren Savage:
Invited: Independent Verification and Validation of Security-Aware EDA Tools and IP. DAC 2021: 1299-1302 - [c79]Shubham Rai, Siddharth Garg, Christian Pilato, Vladimir Herdt, Elmira Moussavi, Dominik Sisejkovic, Ramesh Karri, Rolf Drechsler, Farhad Merchant, Akash Kumar:
Vertical IP Protection of the Next-Generation Devices: Quo Vadis? DATE 2021: 1905-1914 - [c78]Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, Brandon Reagen:
DeepReDuce: ReLU Reduction for Fast Private Inference. ICML 2021: 4839-4849 - [c77]Mahshad Shariatnasab, Farhad Shirani, Siddharth Garg, Elza Erkip:
On Graph Matching Using Generalized Seed Side-Information. ISIT 2021: 2726-2731 - [c76]Zahra Ghodsi, Siva Kumar Sastry Hari, Iuri Frosio, Timothy Tsai, Alejandro J. Troccoli, Stephen W. Keckler, Siddharth Garg, Anima Anandkumar:
Generating and Characterizing Scenarios for Safety Testing of Autonomous Vehicles. IV 2021: 157-164 - [c75]Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, Siddharth Garg:
Circa: Stochastic ReLUs for Private Deep Learning. NeurIPS 2021: 2241-2252 - [c74]